Complex transport in strongly disordered materials
نویسنده
چکیده
The Lorentz model constitutes a reference model for transport in disordered materials. Here a tracer meanders through an array of frozen obstacles which in the simplest variant are assumed to be distributed independently. As the density of scatterers increases, the regions of excluded volume start to overlap until eventually long-range transport ceases to exist entirely. This localization transition is of purely geometric origin and coincides with the percolation of the void space.
منابع مشابه
Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method
We describe how to obtain electronic transport properties of disordered graphene, including the tight binding model and nearest neighbor hopping. We present a new method for computing, electronic transport wave function and Greens function of the disordered Graphene. In this method, based on the small rectangular approximation, break up the potential barriers in to small parts. Then using the f...
متن کاملConductance of T-shaped Graphene nanodevice with single disorder
Disordered T-shaped graphene nanodevice (TGN) was designed and studied in this paper. We demonstrated the intrinsic transport properties of the TGN by using Landauer approach. Knowing the transmission probability of an electron the current through the system is obtained using Landauer-Buttiker formalism. The effects of single disorder on conductance, current and on the transport length scales a...
متن کاملConductance of T-shaped Graphene nanodevice with single disorder
Disordered T-shaped graphene nanodevice (TGN) was designed and studied in this paper. We demonstrated the intrinsic transport properties of the TGN by using Landauer approach. Knowing the transmission probability of an electron the current through the system is obtained using Landauer-Buttiker formalism. The effects of single disorder on conductance, current and on the transport length scales a...
متن کاملTransport length scales in disordered graphene-based materials: strong localization regimes and dimensionality effects.
We report on a numerical study of quantum transport in disordered two dimensional graphene and graphene nanoribbons. By using the Kubo and the Landauer approaches, transport length scales in the diffusive (mean free path and charge mobilities) and localized regimes (localization lengths) are computed, assuming a short range disorder (Anderson-type). The electronic systems are found to undergo a...
متن کاملOxygen-deficient perovskites: linking structure, energetics and ion transport.
The present review focuses on links between structure, energetics and ion transport in oxygen-deficient perovskite oxides, ABO(3-delta). The perfect long-range order, convenient for interpretations of the structure and properties of ordered materials, is evidently not present in disordered materials and highly defective perovskite oxides are spatially inhomogeneous on an intermediate length sca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011